
Journal of Computational Physics 228 (2009) 7565–7595
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An accurate and efficient method for the incompressible Navier–Stokes
equations using the projection method as a preconditioner

Boyce E. Griffith *

Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
a r t i c l e i n f o

Article history:
Received 4 November 2008
Received in revised form 22 May 2009
Accepted 3 July 2009
Available online 10 July 2009

MSC:
65M06
65M12
65M55
76D05
76M20

Keywords:
Incompressible flow
Navier–Stokes equations
Preconditioner
Projection method
Block factorization
Approximate Schur complement
Physical boundary conditions
Multigrid
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.07.001

* Address: Smilow Research Building, New York U
E-mail address: boyce.griffith@nyumc.org
a b s t r a c t

The projection method is a widely used fractional-step algorithm for solving the incom-
pressible Navier–Stokes equations. Despite numerous improvements to the methodol-
ogy, however, imposing physical boundary conditions with projection-based fluid
solvers remains difficult, and obtaining high-order accuracy may not be possible for
some choices of boundary conditions. In this work, we present an unsplit, linearly-
implicit discretization of the incompressible Navier–Stokes equations on a staggered
grid along with an efficient solution method for the resulting system of linear equations.
Since our scheme is not a fractional-step algorithm, it is straightforward to specify gen-
eral physical boundary conditions accurately; however, this capability comes at the
price of having to solve the time-dependent incompressible Stokes equations at each
timestep. To solve this linear system efficiently, we employ a Krylov subspace method
preconditioned by the projection method. In our implementation, the subdomain solvers
required by the projection preconditioner employ the conjugate gradient method with
geometric multigrid preconditioning. The accuracy of the scheme is demonstrated for
several problems, including forced and unforced analytic test cases and lid-driven cavity
flows. These tests consider a variety of physical boundary conditions with Reynolds
numbers ranging from 1 to 30000. The effectiveness of the projection preconditioner
is compared to an alternative preconditioning strategy based on an approximation to
the Schur complement for the time-dependent incompressible Stokes operator. The pro-
jection method is found to be a more efficient preconditioner in most cases considered
in the present work.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction
Since its introduction by Chorin [1,2], the projection method has been widely used as a solver for the incompressible Euler
[3–8] and Navier–Stokes [9–29] equations. Generally speaking, the projection method is a fractional-step algorithm for
incompressible flow problems which obtains updated values for the fluid velocity u and pressure p in two steps. First, an
approximation to the momentum equation is solved over a time interval Dt without imposing the constraint of incompress-
ibility, yielding an ‘‘intermediate” fluid velocity field u�, and generallyr � u� – 0. To obtain an approximation to the updated
fluid velocity which does satisfy the constraint of incompressibility, the projection method uses the Hodge decomposition to
compute efficiently the projection of u� onto the space of divergence-free vector fields. Doing so requires the solution of a
. All rights reserved.

niversity School of Medicine, 550 First Avenue, New York, United States. Tel.: +1 212 263 4131.

http://dx.doi.org/10.1016/j.jcp.2009.07.001
mailto:boyce.griffith@nyumc.org
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

7566 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
Poisson equation. The solution u of this linear equation is used both to project u� to obtain the updated fluid velocity u and
also to compute the updated pressure p.

The enduring popularity of the projection method may be attributed to its decomposition of a difficult problem into
sub-problems for which efficient solvers are readily available. For instance, the highly influential second-order projection
method of Bell et al. [10] requires only a solver for the diffusion equation arising from their implicit treatment of the
viscous terms along with a Poisson solver for the discrete projection. Fast solvers employing FFT or multigrid algorithms
may be used in both cases, thereby yielding incompressible Navier–Stokes solvers which are essentially algorithmically
optimal.

Although the projection method framework yields timestepping schemes for the incompressible Navier–Stokes equa-
tions which require relatively simple linear solvers, this approach greatly complicates the specification of physical
boundary conditions. Appropriate ‘‘artificial” boundary conditions must be prescribed for u� and u [18,23], and obtaining
high-order accuracy for u and p may not be possible in some cases, such as at outflow boundaries [30]. Moreover, there
is relatively little theory guiding the choice of approximations used to impose these artificial boundary conditions, and
different standard approximations to the same artificial boundary conditions may result in schemes which are unstable
or stable but low-order accurate, whereas non-standard approximations can result in schemes which are stable and
high-order accurate [21].

In the present work, we view the projection method as an approximate solver for the time-dependent incompressible
Stokes equations, and we use this approximate solver as a preconditioner for the iterative solution of those equations. This
iterative solver is used with a linearly-implicit staggered-grid discretization of the incompressible Navier–Stokes equations
which employs an implicit treatment of the viscous terms and an explicit second-order Godunov (upwind) method for the
nonlinear advection terms. The Godunov scheme used in the present work is based on xsPPM7 [31], a recent version of the
piecewise parabolic method (PPM) [32].

By using an unsplit scheme instead of a fractional-step algorithm, we are able to prescribe general physical boundary con-
ditions accurately and, in most cases, easily. (There appears to be some ambiguity in the specification of normal traction
boundary conditions; we describe herein the approach which we have found to be the most accurate and robust.) Numerical
results for forced and unforced analytic test cases presented in Section 5 demonstrate that our scheme attains fully second-
order convergence rates over a broad range of Reynolds numbers, from Re ¼ 1 to Re � 3000, for a variety of non-trivial phys-
ical boundary conditions. The accuracy of the scheme is also demonstrated at Re � 30000 for a variety of boundary condi-
tions, although these results appear under-resolved on all but the finest computational grids employed in the present work.
When we employ inexact multigrid-preconditioned subdomain solvers, our numerical results demonstrate that the scheme
is scalable in the sense that the number of linear solver and subdomain solver iterations are largely insensitive to the grid
spacing. In many cases, the number of solver/sub-solver iterations is also demonstrated to be largely independent of Re.

The scheme is also demonstrated to converge to benchmark steady solutions [33–35] to the lid-driven cavity flow prob-
lem for Re ¼ 1000;5000, and 7500. Essentially first-order global convergence rates are obtained for the standard lid-driven
cavity flow, which possesses well-known corner singularities [34], and fully second-order pointwise convergence rates are
obtained for a regularized version of this problem [36]. We also demonstrate that improved accuracy (although not im-
proved order of accuracy) may be obtained for the regularized lid-driven cavity problem by employing an alternative
third-order boundary treatment. Because we do not use a fractional-step scheme, it is straightforward to use alternative,
higher-order boundary condition implementations.

The projection method-based preconditioner described in the present work is similar to but distinct from a precon-
ditioner based on an approximation to the Schur complement for the time-dependent incompressible Stokes operator.
Such approximate Schur complement methods were originally introduced in the context of the Oseen equations
[37,38], and these methods have been thoroughly studied by Elman and co-workers [39–41]. (Although it seems likely
that the projection preconditioner could be extended to treat the Oseen equations, this has not yet been done.) In the
results presented in Section 5, we compare the efficiency of the projection preconditioner to a preconditioner based on
an approximate Schur complement. In nearly all cases, the projection method is found to be a significantly more efficient
preconditioner than the approximate Schur complement method. Although other preconditioning strategies for the
incompressible Navier–Stokes equations have been described (see, e.g., [42,43]), most alternative approaches do not ap-
pear to use subdomain solvers.

Although we describe a particular linearly-implicit timestepping scheme for the incompressible Navier–Stokes equations,
we believe that our preconditioning approach is widely applicable. In particular, we expect that the basic approach described
in the present work could be used to convert an existing fractional-step staggered-grid incompressible flow solver into an
unsplit solver. Doing so would require only ‘‘wrapping” the existing projection code with a Krylov solver. The additional soft-
ware required is modest and includes: (1) the implementation of code to apply the time-dependent incompressible Stokes
operator to a given vector; (2) the implementation of a (possibly matrix-free) preconditioned Krylov solver for the incom-
pressible Stokes system; and (3) the conversion of the existing staggered-grid projection solver into a preconditioner. Most
of the work required by this conversion could be eliminated by using a high-quality numerical software library such as PETSc
[44–46].

Finally, before proceeding, we note that although the present work treats the case of two spatial dimensions, the mod-
ifications required to extend the methodology to three spatial dimensions are straightforward. Results from an initial
three-dimensional implementation of the scheme are encouraging and will be reported in future work.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7567
2. The continuous equations of motion

Consider a fixed region X � R2 which is filled with a viscous incompressible fluid. (To simplify the presentation, in this
work the physical domain X is taken to be the unit square.) The equations of motion for the fluid are the incompressible
Navier–Stokes equations
q
@u
@t
þ ðu � rÞu

� �
¼ �rpþ lr2uþ f; ð1Þ

r � u ¼ 0; ð2Þ
where x ¼ ðx; yÞ 2 X are fixed physical coordinates, uðx; tÞ ¼ ðuðx; tÞ;vðx; tÞÞ is the fluid velocity, pðx; tÞ is the pressure,
fðx; tÞ ¼ ðf1ðx; tÞ; f2ðx; tÞÞ is an applied body force, q is the uniform fluid density, and l is the uniform dynamic viscosity of
the fluid. We assume that the body force is a given function and is not a function of u or p. Completing the specification
of the problem requires initial conditions for the velocity (but not the pressure) along with boundary conditions.

In the present work, three types of boundary conditions are considered: periodic, prescribed velocity, and prescribed trac-
tion. Letting n ¼ nðxbÞ denote the outward unit normal at a position xb along the domain boundary @X, and letting s ¼ sðxbÞ
denote the unit tangent vector at xb 2 @X, prescribing normal or tangential velocity boundary conditions at a position
xb 2 @X is equivalent to providing values for u � n or u � s at xb. Note that if a normal velocity boundary condition is pre-
scribed at a position xb 2 @X, then no boundary condition may be imposed for the pressure at xb. Prescribing normal or tan-
gential traction boundary conditions at a position xb 2 @X is equivalent to providing values for components of r � n, the stress
normal to the domain boundary, at xb. Since the stress tensor for a viscous incompressible fluid is
r ¼ �pIþ l½ruþ ðruÞT �; ð3Þ
prescribing the normal traction is equivalent to prescribing the value of the normal component of the normal stress,
n � r � n ¼ �pþ 2l @

@n
ðu � nÞ; ð4Þ
at the boundary, and prescribing the tangential traction is equivalent to prescribing the value of the tangential component of
the normal stress,
s � r � n ¼ l @

@n
ðu � sÞ þ @

@s
ðu � nÞ

� �
; ð5Þ
at the boundary. It is important to note that the specification of the normal traction at a position xb 2 @X is equivalent to
specifying a linear combination of pðxbÞ and @

@n ðu � nÞ
� �

ðxbÞ. In practice, we supplement the normal traction boundary con-
dition with the divergence-free condition at the boundary to obtain two equations for these two boundary values.

It is possible to specify boundary values for both the normal and tangential components of the velocity, to specify bound-
ary values for both the normal and tangential tractions, or to specify boundary values for one component of the velocity and
the other component of the traction. In particular, it is possible to prescribe the normal velocity and the tangential traction,
or to prescribe the normal traction and the tangential velocity. We consider all four cases in the present work. For more de-
tails on boundary conditions for the incompressible Navier–Stokes equations, including discussions of alternative boundary
treatments, see, e.g., Chapter 3, Section 8 of Gresho and Sani [47].

3. The discretized equations of motion

3.1. Spatial discretization and finite difference approximations

In the present work, we employ a staggered-grid spatial discretization of the incompressible Navier–Stokes equations.
(The layout of degrees of freedom used in the present work is the same as the MAC scheme [48], although note that we
use spatial and temporal discretizations which are different from those of the MAC scheme.) Briefly, the physical domain
X is described using a fixed N � N Cartesian grid with uniform meshwidths Dx ¼ Dy ¼ h ¼ 1

N. The discretized velocity field
is defined in terms of those vector components that are normal to the edges of the grid cells (or, in three spatial dimensions,
the faces of the grid cells), and the pressure is defined at the centers of the grid cells. See Fig. 1.

Before describing the finite difference approximations to the spatial differential operators appearing in Eqs. (1) and (2),
we introduce notation to describe the quantities defined on the grid. The centers of the Cartesian grid cells are the points
xi;j ¼ iþ 1

2

� �
h; ðjþ 1

2Þh
� �

, where i; j ¼ 0; . . . ;N � 1. The pressure pðx; tÞ is defined at the centers of the Cartesian grid cells,
and the values of p on the grid are denoted pn

i;j ¼ pðxi;j; tnÞ, where tn is the time of the nth timestep, and Dtn ¼
Dt ¼ tnþ1 � tn. The centers of the x-edges of the grid cells (i.e., the centers of the cell edges x ¼ constant) are the points
xi�1

2;j
¼ ih; jþ 1

2

� �
h

� �
, where i ¼ 0; . . . ;N and j ¼ 0; . . . ;N � 1, and the centers of the y-edges of the grid cells (i.e., the centers

of the cell edges y ¼ constant) are the points xi;j�1
2
¼ iþ 1

2

� �
h; jh

� �
, where i ¼ 0; . . . ;N � 1 and j ¼ 0; . . . ;N. The u-component

of the fluid velocity is defined at the centers of the x-edges of the grid cells, and the v-component of the fluid velocity is de-
fined at the centers of the y-edges of the grid cells. In particular, the values of u on the grid are denoted un

i�1
2;j
¼ uðxi�1

2;j
; tnÞ, and

Fig. 1. A staggered-grid spatial discretization. The velocity field u is defined in terms of those vector components that are normal to the edges of the grid
cells, and the pressure p is defined at the centers of the grid cells.

7568 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
the values of v on the grid are denoted vn
i;j�1

2
¼ vðxi;j�1

2
; tnÞ. The components of the given body force f ¼ ðf1; f2Þ are likewise

defined at the centers of the x- and y-edges of the Cartesian grid cells.
We next introduce notation for the finite difference approximations to the spatial differential operators appearing in the

equations of motion. The divergence of u ¼ ðu;vÞ is approximated at cell centers by
D � u ¼ Dxuþ Dyv ; ð6Þ

ðDxuÞi;j ¼
uiþ1

2;j
� ui�1

2;j

h
; ð7Þ

ðDyvÞi;j ¼
v i;jþ1

2
� v i;j�1

2

h
; ð8Þ
and the gradient of p is approximated at the x- and y-edges of the grid cells by
Gp ¼ ðGxp;GypÞ; ð9Þ

ðGxpÞi�1
2;j
¼

pi;j � pi�1;j

h
; ð10Þ

ðGypÞi;j�1
2
¼

pi;j � pi;j�1

h
: ð11Þ
There are three different approximations to the Laplace operator required in the present scheme, one defined at the cell cen-
ters, one defined at the x-edges of the grid, and one defined at the y-edges of the grid. All employ the same standard 5-point
finite difference stencil. The Laplacian of p is approximated at cell centers by
ðLcpÞi;j ¼
piþ1;j � 2pi;j þ pi�1;j

h2 þ
pi;jþ1 � 2pi;j þ pi;j�1

h2 ; ð12Þ
whereas the approximations to the Laplacian of u (evaluated at x-edges) and v (evaluated at y-edges) are
ðLxuÞi�1
2;j
¼

uiþ1
2;j
� 2ui�1

2;j
þ ui�3

2;j

h2 þ
ui�1

2;jþ1 � 2ui�1
2;j
þ ui�1

2;j�1

h2 ; ð13Þ

ðLyvÞi;j�1
2
¼

v iþ1;j�1
2
� 2v i;j�1

2
þ v i�1;j�1

2

h2 þ
v i;jþ1

2
� 2v i;j�1

2
þ v i;j�3

2

h2 : ð14Þ
The finite difference approximation to the vector Laplacian of u ¼ ðu;vÞ is denoted Lu ¼ ðLxu; LyvÞ. It is important to keep in
mind that although Lc; Lx, and Ly are essentially the same discretization of the Laplacian, each is applied to a different
variable.

Evaluating the foregoing finite difference approximations near the boundaries of the computational domain requires the
specification of boundary values along @X and ‘‘ghost” values located outside of X. At periodic boundaries, the ghost values
are copies of the corresponding interior values, and at physical boundaries, the boundary and ghost values are determined
from the physical boundary conditions as described in Section 3.3.

The nonlinear term ðu � rÞu is evaluated using a version of the piecewise parabolic method (PPM) of Colella and Wood-
ward [32]. The particular approach used in the present work is based on the xsPPM7 scheme of Rider et al. [31]. PPM was

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7569
originally developed to simulate compressible fluid dynamics, and it continues to be widely used in various areas of com-
putational fluid dynamics. PPM is typically employed to extrapolate cell-centered values defined at time tn to edge-centered
values (in two spatial dimensions) or face-centered values (in three spatial dimensions) defined at time tnþ1

2 ¼ tn þ 1
2 Dt. In the

present staggered-grid context, however, we employ PPM only to extrapolate values in space and do not use PPM to extrap-
olate values forward in time. An overview of our edge-centered Godunov scheme is provided in Appendix A.

3.2. Time discretization

We now turn our attention to the temporal discretization of the equations of motion. One possible time discretization is
obtained by the straightforward application of the implicit midpoint rule to the incompressible Navier–Stokes equations.
Doing so yields
q
unþ1 � un

Dt
þ N unþ1

2

� �� �
¼ �Gpnþ1

2 þ lLunþ1
2 þ fnþ1

2; ð15Þ

D � unþ1 ¼ 0; ð16Þ
where unþ1
2 ¼ 1

2 ðunþ1 þ unÞ and Nðunþ1
2Þ � unþ1

2 � r
� �

unþ1
2

h i
is the PPM approximation to the nonlinear advection term. Since

N(u) is a nonlinear function of u, using this fully implicit time discretization would require solving a nonlinear system of alge-
braic equations at each timestep.

Rather than solving Eqs. (15) and (16) exactly, we instead employ a fixed number ncycles of steps of fixed-point iteration to
obtain an approximate solution to the fully-coupled nonlinear problem. In our approach, we treat the linear terms implicitly
and the nonlinear terms explicitly, always using the most recently computed approximation to unþ1

2 when evaluating the
nonlinear advection term. Let unþ1;k and pnþ1

2;k denote the approximations to unþ1 and pnþ1
2 obtained after k steps of fixed-

point iteration. We obtain unþ1;kþ1 and pnþ1
2;kþ1 from unþ1;k and pnþ1

2;k by solving the linear system of equations
q
unþ1;kþ1 � un

Dt
þ N unþ1

2;k
� �� �

¼ �Gpnþ1
2;kþ1 þ lLunþ1

2;kþ1 þ fnþ1
2; ð17Þ

D � unþ1;kþ1 ¼ 0; ð18Þ
where unþ1
2;kþ1 ¼ 1

2 ðunþ1;kþ1 þ unÞ and Nðunþ1
2;kÞ � unþ1

2;k � r
� �

unþ1
2;k

h i
is an explicit PPM approximation to the nonlinear advec-

tion term. Except for the explicit approximation to ðu � rÞu, Eqs. (15) and (16) and Eqs. (17) and (18) are identical. The final

updated values of the velocity and pressure are unþ1 ¼ unþ1;ncycles and pnþ1
2 ¼ pnþ1

2;ncycles , i.e., each timestep requires the compu-
tation of ncycles solutions of the time-dependent incompressible Stokes equations.

For each timestep n > 0, initial approximations to the velocity and pressure are obtained from the timestep-lagged veloc-
ity and pressure, i.e., unþ1;0 ¼ un and pnþ1

2;0 ¼ pn�1
2. For the initial timestep n ¼ 0, we use the initial conditions to determine

u1;0 ¼ u0. Unless we solve an auxiliary system of equations, however, an initial value for the pressure is not generally avail-
able. For simplicity, we set p

1
2;0 ¼ 0. Note that the value of pnþ1

2;k does not affect the value of pnþ1
2;kþ1. Instead, pnþ1

2;k only serves
as an initial guess for the iterative solution of Eqs. (17) and (18) as described in Section 4. Consequently, although setting
p

1
2;0 ¼ 0 may increase the number of iterations required for the initial linear solve to converge when compared to subsequent

solves, setting p
1
2;0 ¼ 0 does not affect the accuracy of p

1
2.

Note that if the fixed-point iterations are truncated after only a single step (ncycles ¼ 1; one Stokes solve per timestep), this
scheme corresponds to the application of forward Euler to the advection terms and Crank–Nicolson to the viscous terms,
yielding a first-order accurate temporal discretization. Similarly, if the iterations are truncated after two steps (ncycles ¼ 2;
two Stokes solves per timestep), this scheme is similar to the combination of the explicit midpoint rule for the advection
terms and Crank–Nicolson for the viscous terms, yielding a second-order accurate temporal discretization. In practice, we
typically truncate the fixed-point iterations after three steps. Although the resulting method is still only second-order accu-
rate in time, we have found that truncating the fixed-point iterations after three steps ðncycles ¼ 3Þ appears to yield a signif-
icant improvement in stability compared to using only two steps. In particular, with ncycles ¼ 2, numerical experiments
suggest that the largest stable CFL number for the scheme is 0.5, whereas with ncycles ¼ 3, we have found that the scheme
remains stable up to a CFL number of 1. Moreover, the additional solve is often relatively inexpensive in practice because
unþ1;2 and pnþ1

2;2 are typically fairly accurate initial approximations to unþ1;3 and pnþ1
2;3. In cases in which the scheme remains

stable for ncycles ¼ 2, however, note that there appears to be essentially no improvement in accuracy for ncycles > 2. In the tests
reported in the present work, we always employ n cycles ¼ 3.

3.3. Physical boundary conditions

We now turn our attention the determination of the boundary and ghost values required at physical boundaries by the
foregoing discretization during the time interval ½tn; tnþ1�. To simplify the presentation, we restrict our attention to the do-
main boundary in the vicinity of a single grid cell ðN � 1; jÞ;0 6 j < N, which is located along the right side of the physical
domain; see Fig. 2. Along this portion of the domain boundary, the outward unit normal vector is n ¼ ð1;0Þ and the unit tan-
gent vector is s ¼ ð0;1Þ. With u ¼ ðu;vÞ, the normal velocity at the boundary is u � n ¼ u, the tangential velocity is u � s ¼ v ,

Fig. 2. Positions of the velocity components and pressure in the vicinity of cell ðN � 1; jÞ, which is located along the boundary along the right side of the
physical domain. Interior and boundary values are indicated in black, and ghost values located outside of the physical domain are indicated in grey.

7570 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
and the stress normal to the domain boundary is r � n ¼ �pþ 2l @u
@x ;l

@v
@x þ @u

@y

� �� �
. The boundary treatment along the other

sides of the physical domain is analogous.
For the types of boundary conditions considered in the present work, there are four cases to consider.

(1) The normal velocity is prescribed at position xN�1
2;j

:
Suppose that the normal velocity is provided at position xN�1

2;j
as an explicit function of time, unorm

N�1
2;j
ðtÞ. We directly

impose this boundary condition at time t ¼ tn by setting
un
N�1

2;j
¼ unorm

N�1
2;j
ðtnÞ: ð19Þ

The value of unþ1
N�1

2;j
is specified analogously. In this case, no expressions are required for the ghost values pN;j or uNþ1

2;j
. In

particular, in this case, no boundary condition for the pressure is needed, nor may a boundary condition for the pres-
sure be prescribed.
(2) The normal traction is prescribed at position xN�1
2;j

:
Suppose that the normal traction is provided at position xN�1

2;j
as an explicit function of time, Fnorm

N�1
2;j
ðtÞ. In this case, the

boundary condition is
ðn � r � nÞ xN�1
2;j
; t

� �
¼ �pþ 2l @u

@x

� �
xN�1

2;j
; t

� �
¼ Fnorm

N�1
2;j
ðtÞ ð20Þ

and we must obtain ghost values for both u and p. To obtain two equations for the two unknown boundary values @u
@x

and p, we supplement the traction boundary condition (20) with the divergence-free condition at the boundary,

ðr � uÞðxN�1
2;j
; tÞ ¼ @u

@x
þ @v
@y

� �
xN�1

2;j
; t

� �
¼ 0; ð21Þ

i.e.,

@u
@x

xN�1
2;j
; t

� �
¼ � @v

@y
xN�1

2;j
; t

� �
: ð22Þ

Our approach is to obtain ghost values for u at times t ¼ tn and tnþ1 via a finite difference approximation to Eq. (22).
We then obtain a ghost value for p at time t ¼ tnþ1

2 via a finite difference approximation to Eq. (20) along with the pre-
viously-determined ghost values for un and unþ1.
First, we use a finite difference approximation to Eq. (22) to obtain a ghost values for un

Nþ1
2;j

. To do so, we compute lin-
early-extrapolated values of the tangential velocity at the boundary via

vn
N�1

2;j	
1
2
¼ 3

2
vn

N�1;j	1
2
� 1

2
vn

N�2;j	1
2
: ð23Þ

Using these extrapolated boundary values, we then compute a finite difference approximation to the divergence-free
condition via

un
Nþ1

2;j
� un

N�3
2;j

2h
þ

vn
N�1

2;jþ
1
2
� vn

N�1
2;j�

1
2

h
¼ 0; ð24Þ

thereby obtaining a formula for the normal component of the velocity at the boundary at time t ¼ tn in terms of values
defined on the staggered computational grid, namely

un
Nþ1

2;j
¼ un

N�3
2;j
� 3vn

N�1;jþ1
2
þ vn

N�2;jþ1
2
þ 3vn

N�1;j�1
2
� vn

N�2;j�1
2
: ð25Þ

The normal component of the velocity at the boundary at time t ¼ tnþ1 is similarly

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7571
unþ1
Nþ1

2;j
¼ unþ1

N�3
2;j
� 3vnþ1

N�1;jþ1
2
þ vnþ1

N�2;jþ1
2
þ 3vnþ1

N�1;j�1
2
� vnþ1

N�2;j�1
2
: ð26Þ

Having determined ghost values for the normal velocity, we next employ a timestep-centered finite difference approx-
imation to the normal traction boundary condition,

�
p

nþ1
2

N;j þ p
nþ1

2
N�1;j

2
þ l

un
Nþ1

2;j
� un

N�3
2;j

2h
þ

unþ1
Nþ1

2;j
� unþ1

N�3
2;j

2h

0@ 1A ¼ Fnorm
N�1

2;j
tnþ1

2

� �
: ð27Þ

Plugging Eqs. (25) and (26) into Eq. (27) along with minor rearrangement yields an expression for p
nþ1

2
N;j which involves

only interior values defined on the staggered grid along with the prescribed boundary value, Fnorm
N�1

2;j
tnþ1

2

� �
.

(3) The tangential velocity is prescribed at position xN�1
2;j�

1
2
:

Suppose that the tangential velocity is provided at position xN�1
2;j�

1
2

as an explicit function of time, v tan
N�1

2;j�
1
2
ðtÞ. We

impose this boundary condition at time t ¼ tn via a linear fit to the nearest internal value along with the prescribed
boundary value, so that
vn
N;j�1

2
¼ 2v tan

N�1
2;j�

1
2
ðtnÞ � vn

N�1;j�1
2
: ð28Þ

The value of vnþ1
N;j�1

2
is determined analogously.
(4) The tangential traction is prescribed at position xN�1
2;j�

1
2
:

Suppose that the tangential traction is provided at position xN�1
2;j�

1
2

as an explicit function of time, Ftan
N�1

2;j�
1
2
ðtÞ. We impose

the boundary condition� �

ðs � r � nÞ xN�1

2;j�
1
2
; t

� �
¼ l @v

@x
þ @u
@y

xN�1
2;j�

1
2
; t

� �
¼ Ftan

N�1
2;j�

1
2
ðtÞ ð29Þ

at time tn via the finite difference approximation

l
vn

N;j�1
2
� vn

N�1;j�1
2

h
þ

un
N�1

2;j
� un

N�1
2;j�1

h

 !
¼ Ftan

N�1
2;j�

1
2
ðtnÞ; ð30Þ

which, after minor rearrangement, yields an explicit formula for vn
N;j�1

2
involving only interior values defined on the

staggered grid along with the prescribed boundary value, Ftan
N�1

2;j�
1
2
ðtnÞ. An analogous formula is obtained for vnþ1

N;j�1
2
.

4. Linear solvers

Solving for unþ1;kþ1 and pnþ1
2;kþ1 in Eqs. (17) and (18) requires the solution of the block linear system
q
Dt I � l

2 Lx 0 Gx

0 q
Dt I � l

2 Ly Gy

�Dx �Dy 0

0B@
1CA unþ1;kþ1

vnþ1;kþ1

pnþ1
2;kþ1

0B@
1CA ¼

q
Dt I þ l

2 Lx� �
un � qN

nþ1
2;k

1 þ f
nþ1

2
1

q
Dt I þ l

2 Ly� �
vn � qN

nþ1
2;k

2 þ f
nþ1

2
2

0

0BB@
1CCA; ð31Þ

� � � � � �

where N unþ1

2;k ¼ N
nþ1

2;k
1 ;N

nþ1
2;k

2 and fnþ1
2 ¼ f

nþ1
2

1 ; f
nþ1

2
2 . Note that the choice of sign for Dx and Dy in Eq. (31) makes the ma-

trix symmetric for certain choices of boundary conditions, e.g., in the case of periodic boundary conditions.
We solve Eq. (31) via the flexible GMRES (FGMRES) algorithm [49] using unþ1;k and pnþ1

2;k as initial approximations to

unþ1;kþ1 and pnþ1
2;kþ1, and with one of the two preconditioners described in Sections 4.1 and 4.2. Both preconditioners are con-

structed using preconditioned conjugate gradient (CG) solvers for Ax ¼ q
Dt I � l

2 Lx� �
;Ay ¼ q

Dt I � l
2 Ly� �

, and �Lc ¼ �D � G. In the
following discussion, we shall also make use of the operator Ac ¼ q

Dt I � l
2 Lc� �

. Recall that although Lx; Ly, and Lc are all essen-

tially the same finite difference approximation tor2 ¼ @2

@x2 þ @2

@y2, each is applied to a different variable. Similarly, Ax
;Ay, and Ac

are all essentially the same discretized operator, but each acts on a different variable.
Note that not all Krylov methods allow for the use of other Krylov methods as preconditioners. For instance, precondition-

ers for standard Krylov methods such as CG, GMRES, and Bi-CGSTAB are required to be fixed linear operators. In other words,
for such methods, the application of the preconditioner to a vector must correspond to matrix–vector multiplication by a
matrix which does not vary between Krylov iterations. This requirement precludes the use of another Krylov method in
the preconditioner because Krylov methods are non-stationary iterative methods, i.e., the application of one or more steps
of a Krylov method does not correspond to multiplication by a fixed matrix. FGMRES and other so-called flexible Krylov meth-
ods are designed to allow for the preconditioner to vary between iterations. In particular, such algorithms allow for the use of
other Krylov methods as preconditioners; see [50,51] and the references therein.

4.1. A preconditioner based on the projection method

To use the projection method as a preconditioner for Eq. (31) (see Appendix B for a brief description of the particular sec-
ond-order projection method used to construct the projection preconditioner), it must be recast as an approximate solver for
the linear system

7572 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
Ax 0 Gx

0 Ay Gy

�Dx �Dy 0

0B@
1CA u

v
p

0B@
1CA ¼ A G

�D � 0

� �
u
p

� �
¼

f
fp

� �
ð32Þ
with homogeneous boundary conditions, where u ¼ ðu;vÞ; f ¼ ðfu; fv Þ, and
A ¼ Ax 0
0 Ay

 !
¼

q
Dt I � l

2 Lx 0
0 q

Dt I � l
2 Ly

 !
: ð33Þ
It is important to note that in a Krylov method, the preconditioner is applied to the residual vector, and in general, the resid-
ual does not satisfy the discrete incompressibility condition. Therefore, the projection preconditioner must allow for the case
that �D � u ¼ fp – 0.

We convert the projection method into a preconditioner as follows:
First, we compute u� ¼ ðu�; v�Þ, an ‘‘intermediate” approximation to u ¼ ðu; vÞ, by solving
Axu� ¼ q
Dt

I � l
2

Lx
� �

u� ¼ fu; ð34Þ

Ayv� ¼ q
Dt

I � l
2

Ly
� �

v� ¼ fv : ð35Þ
Generally, �D � u�–fp. To construct a vector field u which does satisfy the specified divergence condition, we next project u�

onto the space of vector fields satisfying �D � u ¼ fp by solving
q
u� u�

Dt
¼ �Gu; ð36Þ

� D � u ¼ fp ð37Þ
for u and u. Taking the discrete divergence of Eq. (36) and using Eq. (37), we have that u is the solution of the discrete Pois-
son problem
�D � Gu ¼ �Lcu ¼ � q
Dt
ðfp þ D � u�Þ: ð38Þ
Note that the key difference between the projection method as a preconditioner and the projection method as a solver is
that, in a typical projection solver, we wish to impose �D � u ¼ 0, whereas in the projection preconditioner, we generally
wish to impose �D � u ¼ fp–0.

Finally, we obtain u ¼ ðu;vÞ and p by evaluating
u ¼ u� � Dt
q

Gxu; ð39Þ

v ¼ v� � Dt
q

Gyu; ð40Þ

p ¼ I � Dt
q

l
2

Lc
� �

u: ð41Þ
The projection preconditioner may be expressed in matrix form:
Pproj ¼
I � Dt

q G

0 I � Dt
q

l
2 Lc

 !
I 0
0 ð�LcÞ�1

� �
I 0

� q
Dt D � � q

Dt I

 !
A�1 0

0 I

 !
: ð42Þ
In certain special cases, note that Pproj is actually an exact solver for Eq. (32) when exact solvers are used for the subdomain
problems Ax

;Ay, and �Lc . (By exact subdomain solvers, we mean either direct solvers, which solve the linear systems to with-
in roundoff error, or iterative solvers which employ stringent convergence tolerances.) For instance, in the case of periodic
boundary conditions, the Pproj-preconditioned FGMRES solver for Eq. (31) is guaranteed to converge in a single step when
exact subdomain solvers are employed. In practice, we do not typically employ exact subdomain solvers. Instead, we typi-
cally employ inexact subdomain solvers which terminate after only a few iterations; see Section 4.3.

4.2. An approximate Schur complement preconditioner

Following [39], an alternative approach to preconditioning Eq. (31) may be obtained by considering the block LU-
factorization
Ax 0 Gx

0 Ay Gy

�Dx �Dy 0

0B@
1CA ¼ A G

�D � 0

� �
¼

I 0
�D � A�1 I

� �
A G
0 �S

� �
; ð43Þ

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7573
where
A ¼ Ax 0
0 Ay

 !
¼

q
Dt I � l

2 Lx 0
0 q

Dt I � l
2 Ly

 !
ð44Þ
and S ¼ �D � A�1G is the Schur complement.
The exact Schur complement preconditioner for Eq. (31) is the matrix
PSchur ¼
A G
0 �S

� ��1

: ð45Þ
Note that
A G
�D� 0

� �
PSchur ¼

A G
�D � 0

� �
A G
0 �S

� ��1

¼
I 0

�D � A�1 I

� �
: ð46Þ
Using this property, it can be shown [52,39] that if PSchur were used as a right preconditioner for FGMRES applied to Eq. (31),
then the preconditioned solver would always converge within two steps.

We wish to construct a preconditioner based on PSchur which can be constructed out of subdomain solvers for Ax;Ay, and
�Lc . We begin by computing the block factorization of PSchur,
PSchur ¼
A G
0 �S

� ��1

¼ A�1 0
0 I

 !
I �G
0 I

� �
I 0
0 �S�1

� �
: ð47Þ
Thus, the implementation of the exact Schur complement preconditioner requires the application of �S�1 ¼ ðD � A�1GÞ�1,
which is generally too expensive an operation to result in an efficient preconditioner.

To obtain an efficient preconditioner, we replace S with a matrix bS � S,
bS ¼ �D � G q
Dt

I � l
2

Lc
� ��1
� �

: ð48Þ
Letting Ac ¼ q
Dt I � l

2 Lc� �
, we have that
bS ¼ �LcðAcÞ�1

: ð49Þ

Note that bS is obtained by assuming that GAc � AG, so that G � AGðAcÞ�1, and thus
S ¼ �D � A�1G � �D � A�1ðAGðAcÞ�1Þ ¼ �D � GðAcÞ�1 ¼ bS: ð50Þ
Note that S ¼ bS only in special situations in which GAc ¼ AG, such as in the case of periodic boundary conditions. In general,
S – bS.

Using bS in place of S in PSchur yields the approximate Schur complement preconditioner bPSchur:
bPSchur ¼
A G
0 �bS

� ��1

¼ A�1 0
0 I

 !
I �G
0 I

� �
I 0
0 �bS�1

� �
ð51Þ

¼ A�1 0
0 I

 !
I �G
0 I

� �
I 0
0 AcðLcÞ�1

� �
: ð52Þ
Note that the implementation of the approximate Schur complement preconditioner requires the same subdomain solvers as
the projection preconditioner Pproj. In cases in which S ¼ bS, such as when periodic boundary conditions are employed, note
that the bPSchur-preconditioned FGMRES solver for Eq. (31) is guaranteed to converge in at most two steps when exact sub-
domain solvers are employed for Ax

;Ay, and �Lc . As with the projection method-based preconditioner Pproj, we typically
do not employ exact subdomain solvers, but instead employ approximate subdomain solvers; see Section 4.3.

4.3. Subdomain solvers

The preconditioners described in Sections 4.1 and 4.2 require linear solvers for the velocity subdomain systems
Ax ¼ q

Dt I � l
2 Lx� �

and Ay ¼ q
Dt I � l

2 Ly� �
and for the pressure subdomain system �Lc ¼ �D � G. For the velocity subdomain sys-

tems Ax and Ay, we employ the conjugate gradient (CG) method preconditioned either by the Jacobi algorithm or by geomet-
ric multigrid, and for the pressure subdomain system �Lc , we employ CG preconditioned by geometric multigrid. The
particular multigrid schemes we use are the SMG [53–55] and PFMG [56,55] algorithms implemented in the hypre software
package [57,58]. In the present work, we always use a loose relative residual tolerance �rel ¼ 0:01 for the subdomain solvers,
i.e., the subdomain solvers are said to have ‘‘converged” when the initial residual is reduced by a factor of 100. We have
found that it is generally more efficient to use loose convergence thresholds such as �rel ¼ 0:01 (or even �rel ¼ 0:1) for these
‘‘inner” solvers than it is to use tight convergence thresholds. The reason for this appears to be that reaching the rather strin-
gent convergence threshold required of the outer FGMRES solver (a relative threshold of 1.0e�10 in the present work)

7574 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
usually requires multiple FGMRES iterations, even when very tight sub-solver convergence tolerances are employed, and so
‘‘over-solving” the subdomain systems reduces the efficiency of the overall algorithm. The determination of ‘‘optimal” con-
vergence thresholds for the subdomain solvers is left as future work.

Homogeneous physical boundary conditions are required for the subdomain solvers; however, note that the choices for
these ‘‘artificial” boundary conditions do not affect the accuracy of the scheme. Instead, they impact only the rate of con-
vergence of the linear solver. Artificial boundary conditions which are ‘‘incompatible” with the true physical boundary
conditions can yield a non-convergent solver, however. At boundaries where normal velocities are prescribed, we employ
homogeneous Dirichlet boundary conditions for the normal components in the velocity subdomain solvers and homoge-
neous Neumann boundary conditions in the pressure subdomain solver. At boundaries where normal tractions are pre-
scribed, we employ homogeneous Neumann boundary conditions for the normal components in the velocity
subdomain solvers and homogeneous Dirichlet boundary conditions for the pressure subdomain solver. At boundaries
where tangential velocities are prescribed, we employ homogeneous Dirichlet boundary conditions for the tangential com-
ponents in the velocity subdomain solvers, and at boundaries where tangential tractions are prescribed, we employ homo-
geneous Neumann boundary conditions for the tangential components. Standard second-order implementations of these
boundary conditions are employed.

5. Numerical results

We now present numerical examples which demonstrate the accuracy of the discretization, and which compare the effi-
ciency of the projection method-based preconditioner to the approximate Schur complement preconditioner. Errors and
Table 1
Error in u at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 1:0 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in u at time 0.5
32 3.06e�03 2.01 3.82e�03 2.00 3.19e�03 2.01 3.95e�03 2.00
64 7.63e�04 2.00 9.54e�04 2.00 7.94e�04 2.00 9.88e�04 2.00

128 1.91e�04 2.00 2.39e�04 2.00 1.98e�04 2.00 2.47e�04 2.00
256 4.77e�05 2.00 5.96e�05 2.00 4.96e�05 2.00 6.17e�05 2.00
512 1.19e�05 – 1.49e�05 – 1.24e�05 – 1.54e�05 –

L1 error in u at time 0.5
32 5.28e�03 2.01 6.37e�03 2.00 5.47e�03 1.99 6.51e�03 1.99
64 1.31e�03 2.00 1.60e�03 2.00 1.38e�03 1.99 1.64e�03 1.99

128 3.28e�04 2.00 3.99e�04 2.00 3.47e�04 2.00 4.12e�04 2.00
256 8.20e�05 2.00 9.98e�05 2.00 8.69e�05 2.00 1.03e�04 2.00
512 2.05e�05 – 2.49e�05 – 2.18e�05 – 2.58e�05 –

Table 2
Error in u at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 0:1 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in u at time 0.5
32 2.41e�03 1.98 2.86e�03 1.99 2.57e�03 1.95 3.78e�03 1.99
64 6.11e�04 2.00 7.18e�04 2.00 6.64e�04 1.98 9.55e�04 1.99

128 1.53e�04 2.00 1.80e�04 2.00 1.68e�04 1.99 2.40e�04 2.00
256 3.83e�05 2.00 4.49e�05 2.00 4.23e�05 2.00 6.00e�05 2.00
512 9.57e�06 – 1.12e�05 – 1.06e�05 – 1.50e�05 –

Table 3
Error in u at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 0:01 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in u at time 0.5
32 3.06e�03 1.92 3.17e�03 1.98 3.22e�03 1.97 3.37e�03 1.96
64 8.08e�04 2.00 8.04e�04 2.00 8.25e�04 1.99 8.67e�04 1.99

128 2.02e�04 2.00 2.01e�04 2.00 2.08e�04 1.99 2.18e�04 2.00
256 5.07e�05 2.00 5.02e�05 2.00 5.23e�05 2.00 5.45e�05 2.00
512 1.27e�05 – 1.25e�05 – 1.31e�05 – 1.36e�05 –

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7575
convergence rates are reported in discretized L1; L2, and L1 norms. When analytic solutions are available, errors and conver-
gence rates are reported with respect to those exact solutions. When analytic solutions are not available, errors are estimated
for the purpose of computing convergence rates by computing the norm of the difference of solutions obtained on an N � N
grid to those obtained on a 2N � 2N grid. The discrete L1; L2, and L1 norms of the cell-centered pressure p are computed using
standard formulae [22]. Similar expressions are used when computing the discrete norms for the staggered-grid velocity
u ¼ ðu;vÞ, except that simple modifications to the definitions of the discrete L1 and L2 norms are required at domain bound-
aries to ensure that kð1;0Þk ¼ kð0;1Þk ¼ 1. For instance, kuk1 ¼ kðu;vÞk1 ¼ kuk1 þ kvk1, with
Table 4
Error in u at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 0:001 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in u at time 0.5
32 3.19e�03 1.88 3.49e�03 1.97 3.45e�03 1.97 3.90e�03 1.95
64 8.68e�04 1.88 8.93e�04 1.99 8.81e�04 1.99 1.01e�03 1.99

128 2.36e�04 1.98 2.24e�04 2.00 2.22e�04 1.99 2.55e�04 2.00
256 5.99e�05 2.00 5.59e�05 2.01 5.58e�05 2.00 6.35e�05 2.00
512 1.50e�05 – 1.39e�05 – 1.40e�05 – 1.58e�05 –

Table 5
Error in p at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 1:0 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 1.14e�02 1.98 5.18e�03 1.98 1.09e�02 1.95 5.73e�03 2.00
64 2.90e�03 1.99 1.31e�03 1.99 2.81e�03 1.98 1.43e�03 2.00

128 7.29e�04 1.99 3.30e�04 2.00 7.12e�04 1.99 3.58e�04 2.00
256 1.83e�04 2.00 8.27e�05 2.00 1.79e�04 2.00 8.94e�05 2.00
512 4.58e�05 – 2.07e�05 – 4.49e�05 – 2.23e�05 –

L1 error in p at time 0.5
32 9.47e�02 1.90 2.60e�02 1.90 8.70e�02 1.87 3.36e�02 1.90
64 2.54e�02 1.95 6.99e�03 1.95 2.38e�02 1.94 8.98e�03 1.95

128 6.58e�03 1.98 1.81e�03 1.97 6.18e�03 1.97 2.32e�03 1.98
256 1.67e�03 1.99 4.61e�04 1.99 1.58e�03 1.99 5.88e�04 1.99
512 4.22e�04 – 1.16e�04 – 3.98e�04 – 1.48e�04 –

Table 6
Error in p at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 0:1 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 1.05e�02 1.91 5.06e�03 1.94 9.05e�03 1.91 6.13e�03 1.93
64 2.79e�03 1.96 1.32e�03 1.97 2.42e�03 1.96 1.60e�03 1.97

128 7.18e�04 1.98 3.37e�04 1.98 6.23e�04 1.98 4.09e�04 1.98
256 1.82e�04 1.99 8.51e�05 1.99 1.58e�04 1.99 1.03e�04 1.99
512 4.59e�05 – 2.14e�05 – 3.98e�05 – 2.60e�05 –

Table 7
Error in p at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 0:01 and with various choices of boundary conditions.

N vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 3.93e�03 1.96 2.85e�03 1.92 2.40e�03 1.99 2.53e�03 1.98
64 1.01e�03 1.97 7.56e�04 1.96 6.07e�04 1.99 6.41e�04 1.99

128 2.59e�04 1.98 1.94e�04 1.98 1.53e�04 2.00 1.61e�04 1.99
256 6.55e�05 1.99 4.94e�05 1.99 3.83e�05 2.00 4.05e�05 2.00
512 1.65e�05 – 1.24e�05 – 9.60e�06 – 1.01e�05 –

Table 8
Error in

N

L1 erro
32
64

128
256
512

Fig. 3.
FGMRE
solvers

7576 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
kuk1 ¼
1
2

XN�1

j¼0

ju�1
2;j
jh2 þ

XN�1

i¼1

XN�1

j¼0

jui�1
2;j
jh2 þ 1

2

XN�1

j¼0

juN�1
2;j
jh2
; ð53Þ

kvk1 ¼
1
2

XN�1

i¼0

jv i;�1
2
jh2 þ

XN�1

i¼0

XN�1

j¼1

jv i;j�1
2
jh2 þ 1

2

XN�1

i¼0

jv i;N�1
2
jh2
: ð54Þ
Convergence rates are estimated using standard methods.
For the analytic flows of Sections 5.1 and 5.2, the exact solutions for the velocity and pressure are used to compute ex-

plicit formulae for the various choices of boundary conditions. Although it is straightforward to increase the Reynolds num-
bers used in these test cases by modifying the physical viscosity, these analytic solutions are largely (but not completely)
independent of l. In particular, even for l
 1, the analytic solutions employed in Sections 5.1 and 5.2 do not exhibit char-
acteristics of high Re flows such as thin viscous boundary layers. Nonetheless, at least for the unforced problem of Section
p at time t ¼ 0:5 for the forced flow problem of Section 5.1 with l ¼ 0:001 and with various choices of boundary conditions.

vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate

r in p at time 0.5
2.84e�03 1.87 2.64e�03 1.91 2.51e�03 1.99 2.52e�03 1.99
7.76e�04 1.97 7.02e�04 1.95 6.31e�04 1.99 6.35e�04 1.99
1.99e�04 1.99 1.82e�04 1.98 1.59e�04 1.99 1.60e�04 1.99
5.00e�05 1.99 4.61e�05 1.99 3.99e�05 2.00 4.01e�05 2.00
1.26e�05 – 1.16e�05 – 1.00e�05 – 1.01e�05 –

Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-preconditioned
S solver for specified normal and tangential velocity boundary conditions. Note that the values reported for the numbers of iterations for the A and Lc

are the average numbers of sub-solver iterations per Stokes solve, not per FGMRES iteration. See further discussion in Section 5.1.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7577
5.2, imposing physical boundary conditions accurately and stably at high Reynolds numbers is difficult, especially for the
case of traction boundary conditions. To demonstrate the capability of the scheme for problems with characteristics of high
Re flows (e.g., thin boundary layers), in Section 5.3 we also present steady solutions obtained by the method for the well-
known lid-driven cavity flow, along with a regularized version [36] of this problem.

5.1. Forced flow

Our first example is taken from Brown et al. [18]. This problem employs the method of manufactured solutions, using a
forcing term fðx; tÞ constructed so that the velocity and pressure satisfy
Fig. 4.
FGMRE
uðx; tÞ ¼ cosð2pðx�xðtÞÞÞð3y2 � 2yÞ; ð55Þ
vðx; tÞ ¼ 2p sinð2pðx�xðtÞÞÞy2ðy� 1Þ; ð56Þ

pðx; tÞ ¼ �x0ðtÞ
2p sinð2pðx�xðtÞÞÞðsinð2pyÞ � 2pyþ pÞ ð57Þ

� l cosð2pðx�xðtÞÞÞð�2 sinð2pyÞ þ 2py� pÞ; ð58Þ
for q ¼ 1 with
xðtÞ ¼ 1þ sinð2pt2Þ: ð59Þ
In our tests, we impose periodic boundary conditions in the x-direction and various choices of physical boundary conditions
in the y-direction. In particular, we consider: (1) specified normal and tangential velocities in the y-direction, abbreviated as
‘‘vel–vel”; (2) specified normal velocity with specified tangential traction in the y-direction, abbreviated as ‘‘vel–tra”; (3)
specified normal traction with specified tangential velocity in the y-direction, abbreviated as ‘‘tra–vel”; and (4) specified nor-
mal and tangential tractions in the y-direction, abbreviated as ‘‘tra–tra”. Errors in the velocity and pressure are computed at
Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-preconditioned
S solver for specified normal velocity and specified tangential traction boundary conditions.

7578 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
time t ¼ 0:5. Following Brown et al. [18], we use a uniform timestep Dt ¼ 1
2N, yielding a CFL number of 0.5. For these tests, we

use a relative convergence tolerance of 1.0e�10 for the FGMRES algorithm and a relative convergence tolerance of 1.0e�2 for
the subdomain solvers. The pressure subdomain solver uses CG preconditioned by PFMG, and the velocity subdomain solver
uses CG preconditioned by SMG.

For the present example, we consider l ¼ 1:0;0:1; 0:01, and 0.001, corresponding to Re = 1, 10, 100, and 1000, respec-
tively, for grid spacings N ¼ 32;64;128;256, and 512. Accuracy results are summarized in Tables 1–8, with both L1 and
L1 results presented for Re = 1, and only L1 results presented for all other cases. Clear second-order convergence rates are
observed in all cases once the grid spacing is sufficiently fine. Moreover, the accuracy of the solver is approximately the same
(within about a factor of two) for all choices of physical boundary conditions. With larger viscosities (i.e., at lower Reynolds
numbers), imposing tangential traction boundary conditions (‘‘vel–tra” and ‘‘tra–tra”) results in lower accuracy for the veloc-
ity and higher accuracy for the pressure when compared to the results obtained by imposing tangential velocity boundary
conditions (‘‘vel–vel” and ‘‘tra–vel”). With smaller viscosities (i.e., at higher Reynolds numbers), these discrepancies are
diminished and ultimately eliminated. These differences are less marked in the discrete L1 norm, especially for the velocity
(data not shown). With smaller viscosities (i.e., at higher Reynolds numbers), the pointwise convergence rates at coarser res-
olutions are generally somewhat less than two, although full second-order convergence rates are ultimately observed once
the computational grid is fine enough. For the range of grid spacings considered, fully second-order convergence rates are
observed in the L1 norm for both the velocity and the pressure (data not shown).

Linear solver iteration results are summarized in Figs. 3–6. Note that these figures report the average numbers of solver
iterations per incompressible Stokes solve. (Recall that with ncycles ¼ 3, three Stokes solves are performed per timestep.) In
particular, for the A and Lc subdomain solvers, we report the average total number of solver iterations per Stokes solve,
not the average number of iterations per FGMRES iteration. The performance results indicate that both preconditioners yield
a scalable algorithm over a broad range of Reynolds numbers for all choices of physical boundary conditions. In particular,
these results indicate that the outer FGMRES and inner multigrid-preconditioned CG iteration counts are largely indepen-
dent of N and of Re. In most cases, the projection preconditioner outperforms the approximate Schur complement precon-
ditioner. The only cases in which the Schur complement preconditioner outperforms the projection preconditioner are at low
Fig. 5. Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-preconditioned
FGMRES solver for specified normal traction and specified tangential velocity boundary conditions.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7579
Reynolds numbers for specified normal and tangential velocity (‘‘vel–vel”) boundary conditions. Note that the velocity sub-
domain solver generally requires only one or two iterations to reach the specified convergence threshold when SMG is used
as a preconditioner.
Fig. 6. Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-preconditioned
FGMRES solver for specified normal and tangential traction boundary conditions.

Table 9
Error in u at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:1 and with various choices of boundary conditions.

N Periodic vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate Error Rate

L1 error in u at time 0.5
32 5.42e�04 1.99 4.01e�04 2.07 9.42e�04 1.96 1.08e�03 1.93 1.28e�03 2.01
64 1.37e�04 1.99 9.54e�05 2.03 2.41e�04 1.99 2.84e�04 1.97 3.19e�04 2.00

128 3.44e�05 1.99 2.34e�05 2.01 6.08e�05 2.00 7.25e�05 1.99 7.97e�05 2.00
256 8.63e�06 2.00 5.80e�06 2.01 1.52e�05 2.00 1.83e�05 1.99 1.99e�05 2.00
512 2.16e�06 2.00 1.44e�06 2.03 3.82e�06 2.00 4.59e�06 2.00 4.97e�06 2.00

1024 5.41e�07 – 3.55e�07 – 9.54e�07 – 1.15e�06 – 1.24e�06 –

L1 error in u at time 0.5
32 6.13e�04 1.99 7.44e�04 2.07 1.64e�03 1.96 1.98e�03 1.90 2.40e�03 2.01
64 1.55e�04 1.99 1.77e�04 2.03 4.21e�04 1.99 5.30e�04 1.96 5.97e�04 2.00

128 3.89e�05 2.00 4.33e�05 2.01 1.06e�04 2.00 1.37e�04 1.98 1.49e�04 2.00
256 9.74e�06 2.00 1.07e�05 2.01 2.66e�05 2.00 3.45e�05 1.99 3.73e�05 2.00
512 2.44e�06 2.00 2.67e�06 2.02 6.65e�06 2.00 8.68e�06 2.00 9.30e�06 2.00

1024 6.10e�07 – 6.58e�07 – 1.66e�06 – 2.17e�06 – 2.32e�06 –

7580 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
5.2. Unforced flow

For our second example, we consider the well-known Taylor vortices, an unforced analytic solution to the two-dimen-
sional incompressible Navier–Stokes equations on the unit square given by
Table 1
Error in

N

L1 erro
32
64

128
256
512

1024

Table 1
Error in

N

L1 erro
32
64

128
256
512

1024

Table 1
Error in

N

L1 erro
32
64

128
256
512

1024
uðx; tÞ ¼ 1� 2 expð�8p2ltÞ cosð2pðx� tÞÞ sinð2pðy� tÞÞ; ð60Þ
vðx; tÞ ¼ 1þ 2 expð�8p2ltÞ sinð2pðx� tÞÞ cosð2pðy� tÞÞ; ð61Þ
pðx; tÞ ¼ � expð�16p2ltÞðcosð4pðx� tÞÞ þ cosð4pðy� tÞÞÞ; ð62Þ
for q ¼ 1.
In our tests, we impose periodic boundary conditions in the x-direction and various choices of physical boundary condi-

tions in the y-direction. In particular, we consider periodic boundary conditions in all directions along with the four combi-
nations of physical boundary conditions considered in the previous subsection (‘‘vel–vel,” ‘‘vel–tra,” ‘‘tra–vel,” and ‘‘tra–tra”).
Errors in the velocity and pressure are computed at time t ¼ 0:5. We use a uniform timestep Dt ¼ 1

4N, yielding a CFL number
of approximately 0.75. For these tests, we use a relative convergence tolerance of 1.0e�10 for the FGMRES algorithm and a
relative convergence tolerance of 1.0e�2 for the subdomain solvers. The pressure subdomain solver uses CG preconditioned
by PFMG, and the velocity solver uses CG preconditioned by point Jacobi.

Accuracy results are summarized in Tables 9–16, which present results for l ¼ 0:1;0:01;0:001, and 0.0001, corresponding
to Re � 30;300;3000, and 30000, respectively, for grid spacings N ¼ 32;64;128;256;512, and 1024. Both L1 and L1 results
are presented for Re � 30, and only L1 results are presented for all other cases. Second-order convergence rates are observed
for most cases once the spatial grid is sufficiently fine. At higher Reynolds numbers, fine grids are required to obtain accurate
0
u at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:01 and with various choices of boundary conditions.

Periodic vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate Error Rate

r in u at time 0.5
4.36e�03 1.97 3.94e�02 2.79 2.49e�01 1.91 8.74e�02 3.05 4.68e�01 1.42
1.11e�03 1.99 5.71e�03 2.83 6.62e�02 2.24 1.06e�02 3.03 1.75e�01 2.13
2.80e�04 1.99 8.04e�04 2.46 1.40e�02 2.22 1.29e�03 2.74 3.99e�02 2.17
7.04e�05 2.00 1.46e�04 2.20 3.01e�03 2.10 1.93e�04 2.41 8.84e�03 2.11
1.77e�05 2.00 3.18e�05 2.09 7.01e�04 2.06 3.62e�05 2.01 2.05e�03 2.06
4.42e�06 – 7.47e�06 – 1.68e�04 – 8.98e�06 – 4.92e�04 –

1
u at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:001 and with various choices of boundary conditions.

Periodic vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate Error Rate

r in u at time 0.5
4.96e�03 2.00 5.64e�01 2.33 9.06e�01 0.38 8.80e�01 1.85 1.56e+00 0.25
1.24e�03 2.00 1.12e�01 2.88 6.94e�01 1.24 2.45e�01 2.70 1.31e+00 0.82
3.11e�04 2.00 1.52e�02 3.11 2.93e�01 1.95 3.76e�02 3.15 7.43e�01 2.52
7.77e�05 2.00 1.77e�03 3.17 7.56e�02 1.97 4.23e�03 3.16 1.30e�01 1.66
1.94e�05 2.00 1.97e�04 3.13 1.93e�02 2.15 4.73e�04 3.08 4.11e�02 2.15
4.86e�06 – 2.24e�05 – 4.35e�03 – 5.58e�05 – 9.27e�03 –

2
u at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:0001 and with various choices of boundary conditions.

Periodic vel–vel vel–tra tra–vel

Error Rate Error Rate Error Rate Error Rate

r in u at time 0.5
5.04e�03 2.00 9.93e�01 0.49 1.04e+00 �0.02 1.72e+00 �0.06
1.26e�03 2.00 7.09e�01 2.14 1.06e+00 0.15 1.79e+00 2.67
3.15e�04 2.00 1.61e�01 2.89 9.52e�01 0.64 2.81e�01 2.25
7.87e�05 2.00 2.17e�02 3.03 6.13e�01 1.58 5.91e�02 3.07
1.97e�05 2.00 2.67e�03 3.05 2.06e�01 1.78 7.05e�03 3.07
4.92e�06 – 3.21e�04 – 5.98e�02 – 8.40e�04 –

Table 14
Error in p at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:01 and with various choices of boundary conditions.

N Periodic vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 6.25e�03 1.93 4.42e�02 2.64 2.65e�01 1.84 7.61e�02 3.16 5.08e�01 1.86
64 1.64e�03 1.97 7.10e�03 2.51 7.39e�02 2.14 8.53e�03 2.99 1.40e�01 2.24

128 4.18e�04 1.98 1.24e�03 2.09 1.68e�02 2.17 1.08e�03 1.79 2.96e�02 2.21
256 1.06e�04 1.99 2.92e�04 2.02 3.74e�03 2.12 3.11e�04 1.90 6.41e�03 2.13
512 2.66e�05 2.00 7.20e�05 2.01 8.62e�04 2.07 8.35e�05 1.96 1.47e�03 2.07

1024 6.66e�06 – 1.79e�05 – 2.06e�04 – 2.14e�05 – 3.49e�04 –

Table 15
Error in p at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:001 and with various choices of boundary conditions.

N Periodic vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 9.47e�03 1.94 6.47e�01 2.24 1.00e+00 0.28 1.29e+00 2.45 2.07e+00 0.54
64 2.47e�03 1.97 1.37e�01 2.84 8.25e�01 1.21 2.36e�01 2.90 1.43e+00 1.22

128 6.31e�04 1.98 1.91e�02 3.05 3.56e�01 1.86 3.16e�02 3.10 6.13e�01 2.07
256 1.60e�04 1.99 2.31e�03 3.09 9.83e�02 2.11 3.69e�03 3.16 1.46e�01 2.15
512 4.01e�05 2.00 2.71e�04 2.83 2.28e�02 2.19 4.13e�04 3.17 3.28e�02 2.20

1024 1.01e�05 – 3.82e�05 – 5.00e�03 – 4.58e�05 – 7.12e�03 –

Table 13
Error in p at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:1 and with various choices of boundary conditions.

N Periodic vel–vel vel–tra tra–vel tra–tra

Error Rate Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 1.12e�05 2.04 6.52e�05 2.02 1.62e�04 2.13 5.50e�05 2.05 2.03e�04 2.08
64 2.72e�06 2.02 1.61e�05 2.00 3.69e�05 2.06 1.33e�05 2.03 4.80e�05 2.04

128 6.72e�07 2.01 4.02e�06 2.00 8.83e�06 2.03 3.26e�06 2.02 1.17e�05 2.02
256 1.67e�07 2.00 1.01e�06 2.00 2.16e�06 2.02 8.05e�07 2.01 2.88e�06 2.01
512 4.17e�08 2.00 2.52e�07 2.05 5.34e�07 2.01 2.00e�07 2.01 7.14e�07 2.01

1024 1.04e�08 – 6.07e�08 – 1.33e�07 – 4.98e�08 – 1.78e�07 –

L1 error in p at time 0.5
32 2.74e�05 2.03 5.58e�04 1.89 1.08e�03 1.97 2.75e�04 2.12 1.20e�03 1.99
64 6.70e�06 2.01 1.51e�04 1.94 2.75e�04 1.99 6.35e�05 1.90 3.03e�04 1.97

128 1.66e�06 2.01 3.91e�05 1.97 6.93e�05 2.00 1.70e�05 1.96 7.74e�05 1.99
256 4.13e�07 2.00 9.96e�06 1.99 1.74e�05 2.00 4.39e�06 1.98 1.95e�05 1.99
512 1.03e�07 2.00 2.52e�06 2.05 4.35e�06 2.00 1.11e�06 1.99 4.90e�06 2.00

1024 2.57e�08 – 6.09e�07 – 1.09e�06 – 2.80e�07 – 1.23e�06 –

Table 16
Error in p at time t ¼ 0:5 for the Taylor vortices problem of Section 5.2 with l ¼ 0:0001 and with various choices of boundary conditions.

N Periodic vel–vel vel–tra tra–vel

Error Rate Error Rate Error Rate Error Rate

L1 error in p at time 0.5
32 9.97e�03 1.94 1.12e+00 0.44 1.17e+00 �0.07 2.33e+00 0.58
64 2.60e�03 1.97 8.24e�01 2.08 1.23e+00 0.09 1.56e+00 2.35

128 6.62e�04 1.99 1.95e�01 2.74 1.16e+00 0.59 3.05e�01 2.73
256 1.67e�04 1.99 2.92e�02 3.00 7.69e�01 1.50 4.60e�02 3.03
512 4.20e�05 2.00 3.65e�03 3.04 2.73e�01 1.91 5.64e�03 3.05

1024 1.05e�05 – 4.43e�04 – 7.25e�02 – 6.82e�04 –

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7581

7582 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
solutions, especially when tangential traction boundary conditions are prescribed. Additionally, we have found that the
scheme becomes unstable for Re � 30000 when traction boundary conditions are used in both the normal and tangential
directions. We experimented with alternative boundary discretizations in an attempt to overcome these instabilities without
success. The instability was not alleviated either by decreasing the timestep size or by increasing the spatial resolution. In
some cases, large estimated convergence rates (i.e., rates significantly larger than 2.0) are observed. Such rates are obtained
when the solution is under-resolved and are not indicative of ‘‘super-convergence” of the algorithm. In most cases, conver-
gence rates which are approximately 2.0 are obtained once the flow is well resolved by the scheme. The results which we
obtain at the smallest viscosities demonstrate the difficulty of simulating high Reynolds number flow — even when the flow
is smooth!

Since this flow is periodic in both the x- and y-directions, we are able to compare the accuracy obtained by the scheme in
the absence of boundaries (i.e., using purely periodic boundary conditions) to that obtained with various choices of physical
boundary conditions. In all cases, we find that imposing physical boundary conditions lowers the accuracy of the computed
solution compared with the solution obtained by imposing periodic boundary conditions in all directions. The largest errors
are generally incurred when tangential traction boundary conditions are specified. In particular, as was seen in the forced
test case of Section 5.1, imposing tangential traction boundary conditions (‘‘vel–tra” and ‘‘tra–tra”) usually results in lower
accuracy for the velocity when compared to the solutions obtained by imposing tangential velocity boundary conditions
(‘‘vel–vel” and ‘‘vel–tra”). Unlike the results obtained for the forced-flow problem, however, these discrepancies are not
diminished at higher Reynolds numbers. Moreover, unlike the forced flow test case of Section 5.1, the approximation to
the pressure is also less accurate for the ‘‘vel–tra” and ‘‘tra–tra” boundary conditions.

Linear solver iteration results are summarized in Figs. 7–12 for N ¼ 32;64;128;256, and 512. Note that these figures re-
port the average number of solver iterations per incompressible Stokes solve. (Recall that with ncycles ¼ 3, three Stokes solves
are performed per timestep.) In particular, for the A and Lc subdomain solvers, we report the average total number of
Fig. 7. Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-preconditioned
FGMRES solver for periodic conditions. Note that as in Figs. 3–6, the values reported for the numbers of iterations for the A and Lc solvers are the average
numbers of sub-solver iterations per Stokes solve, not per FGMRES iteration. See further discussion in Section 5.2.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7583
iterations per Stokes solve, not the average number of iterations per FGMRES iteration. The performance results indicate that
both preconditioners result in a generally scalable algorithm, especially at higher Reynolds numbers. At lower Reynolds
numbers, the velocity subdomain solver loses scalability because it employs the Jacobi algorithm as a preconditioner; see
further discussion below. The projection preconditioner outperforms the approximate Schur complement preconditioner
in all cases.

When Jacobi is used as a preconditioner for the velocity subdomain solver, that subdomain solver is in principle not scal-
able as N !1; however, in our tests, this lack of scalability is manifest only at low Reynolds numbers. As demonstrated in
Section 5.1, this lack of scalability can be alleviated by employing a multigrid preconditioner for the velocity subproblem. At
higher Reynolds numbers, and for the range of grid spacings considered, only one to two Jacobi-preconditioned CG iterations
are typically required to reach the specified relative residual tolerance �rel ¼ 0:01. In particular, in these cases, the algorithm
is scalable in practice even without full multigrid preconditioning. Presumably, for any fixed Reynolds number, the perfor-
mance of the Jacobi-preconditioned subdomain solver will eventually degrade once N is sufficiently large. The present results
indicate, however, that for practical grid spacings, Jacobi may suffice as a preconditioner for moderate-to-high Re
applications.
5.3. Lid-driven cavity flow

Our final example is the well-known lid-driven cavity flow. For this problem, we impose normal and tangential velocity
boundary conditions at each boundary of the physical domain. At each domain boundary except for the upper boundary, we
set ðu;vÞ ¼ ð0;0Þ, so that there is no penetration and no slip. At the upper boundary, where y ¼ 1, we set ðu;vÞ ¼ ð1;0Þ, so
that there is prescribed non-zero slip but no penetration. The initial velocity is set to zero, i.e., we employ a so-called impul-
sive start. To compute steady solutions, we run the unsteady solver at a CFL number of 0.95 until the flow reaches steady
state.
Fig. 8. Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-preconditioned
FGMRES solver for specified normal and tangential velocity boundary conditions.

Fig. 9.Average number of linear solver iterations per incompressible Stokes solve for
FGMRES solver for specified normal velocity and tangential traction boundary conditions.7584B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
5.3.1. Comparison to benchmark solutions
Many benchmark datasets exist for steady solutions to the lid-driven cavity problem [33–35] over a broad range of

Reynolds numbers. Here, we consider only Re = 1000, 5000, and 7500. For two-dimensional lid-driven cavity flow, there is
a Hopf bifurcation at Re � 7500 [59]. Below Re � 7500, any initial flow will converge to a steady solution, whereas for ranges
of values of Re above �7500, both steady and time-periodic solutions exist; see [59]. Although benchmark steady-state solu-
tions are available for Re > 7500 [35], for the simple initial conditions employed, our time-dependent solver converges to
unsteady solutions for Re > 7500. It seems likely that given appropriate initial conditions and adequate spatial resolution,
we would obtain steady solutions to the lid-driven cavity flow for Re > 7500 when such solutions exist.

In Figs. 13–20, we plot the components of the velocity and, when benchmark data are available, the pressure along the
centerlines (x ¼ 0:5 or y ¼ 0:5) of the computational domain. We compute the steady solutions for N ¼ 64;128, and 256. In
all cases, it is clear that the solver is converging to the benchmark values.

5.3.2. Convergence behavior
Although the steady-state results produced by the scheme appear to converge to the benchmark steady-state results over

a range of Reynolds numbers, we also wish to verify the convergence rate of the solver for this problem. It is well known that
the lid-driven cavity flow possesses corner singularities [34], and consequently we do not expect to obtain fully second-order
convergence rates for this problem. In particular, because the fluid velocity is discontinuous and the pressure tends to 	1 at
the corner points ðx; yÞ ¼ ð0;1Þ and (1,1), our computed solutions to u and p are not expected to converge in the L1 norm.
(Note that it is possible to construct numerical schemes which accurately treat the corner singularities present in the clas-
sical lid-driven cavity flow; see [34].) Because exact solutions are not available, we estimate the error on an N � N grid by
computing the norm of the difference of solutions obtained on N � N and 2N � 2N grids. We estimate the convergence rate
of our scheme for Re ¼ 100 and 1000, and for the range of grid spacings considered, we obtain between first- and second-
order convergence rates for u in the discrete L1 and L2 norms. We also obtain between first- and second-order convergence
rates for p in the discrete L1 norm, whereas less than first order rates are observed in the discrete L2 norm. Non-convergence
or even divergence is observed in the discrete L1 norm for all quantities. See Tables 17 and 18.
the projection-preconditioned and approximate Schur-preconditioned

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7585
To test the convergence properties of the scheme for a similar problem which does not possess corner singularities, we
also consider a regularized version [36] of the lid driven cavity problem in which the lid velocity smoothly tapers to zero at
the upper corners of the computational domain. In particular, for the regularized lid-driven cavity flow, we set the velocity
along the upper boundary, where y ¼ 1, to be ðu;vÞ ¼ 1

2 ð1þ sinð2px� 1
2 pÞÞ;0

� �
. The velocity along all other boundaries is set

to be ðu;vÞ ¼ ð0;0Þ, as is done in the standard lid-driven cavity problem. Table 19 demonstrates that we obtain fully second-
order convergence rates for this regularized problem at Re ¼ 1000.

Because the error in the computed velocity is concentrated in the thin boundary layers near the boundary of the physical
domain, it is tempting to try to improve the accuracy of the computed solutions by employing higher-order accurate imple-
mentations of the boundary conditions. Recall that although normal velocity boundary conditions are imposed exactly, our
scheme uses linear extrapolation to prescribe tangential velocity boundary conditions. As a final test of the scheme, we re-
place the standard second-order accurate treatment of the tangential velocity boundary conditions described in Section 3.3
with a third-order accurate treatment, in which we determine ghost values for the tangential velocity using a quadratic fit to
the nearest two interior values along with the prescribed boundary value. As shown in Table 20, the modified scheme retains
second-order convergence rates for the regularized lid-driven cavity problem at Re ¼ 1000. Moreover, comparing Tables 19
and 20, we see that the use of third-order accurate tangential velocity boundary conditions results in a modest improvement
in the estimated accuracy of the pressure, and results in a dramatic improvement in the estimated accuracy of the velocity,
especially as measured in the discrete L1 norm. The use and implementation of alternative boundary condition treatments is
greatly facilitated by our use of an unsplit time discretization.
5.3.3. Computational performance
To compare the computational performance of the projection preconditioner to that of the approximate Schur comple-

ment preconditioner, we run our unsteady solver for the standard lid-driven cavity flow problem to time t ¼ 0:25, using
uðx; t ¼ 0Þ � ð0;0Þ as the initial condition. With this initial condition, the flow is far from steady state at t ¼ 0:25. For these
tests, we use a relative convergence tolerance of 1.0e�10 for the FGMRES algorithm and a relative convergence tolerance of
Fig. 10. Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-
preconditioned FGMRES solver for specified normal traction and tangential velocity boundary conditions.

7586 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
1.0e�2 for the subdomain solvers. The pressure subdomain solver uses CG preconditioned by PFMG, and the velocity solver
uses CG preconditioned by point Jacobi. Table 21 displays the total runtime normalized by the number of timesteps and by
the size of the computational grid (i.e., N2 for an N � N grid). These tests were performed on a Linux server with four quad-
core AMD Opteron processors, although only a single core was used for the timings. For this problem, the projection precon-
ditioner yields higher performance than the block factorization-based preconditioner. Both algorithms appear to be scalable
in the sense that the computational work per gridpoint is nearly constant as N increases. Additionally, both preconditioners
appear to be relatively insensitive to the value of Re.
Fig. 11. Average number of linear solver iterations per incompressible Stokes solve for the projection-preconditioned and approximate Schur-
preconditioned FGMRES solver for specified normal and tangential traction boundary conditions.

Fig. 12. Selected streamlines of the computed steady solutions to the lid-driven cavity flow problem at A. Re = 1000, B. Re = 5000, and C. Re = 7500 for
N ¼ 256. Regions of clockwise rotation are indicated by black lines. Counterclockwise vortices near the corners of the domain appear in grey.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7587
6. Discussion
In this work, we have presented an unsplit, linearly-implicit discretization of the incompressible Navier–Stokes equations
on a staggered grid along with an effective solution methodology for the resulting system of linear equations. Because we do
not use a fractional-step algorithm, it is straightforward to specify physical boundary conditions accurately, and our conver-
gence results demonstrate that the discretization is second-order accurate for a variety of choices of physical boundary con-
ditions over a broad range of Reynolds numbers. Possible directions of future research include extending the methodology to
treat variable density and viscosity flows, and exploring alternative time discretizations and different treatments for bound-
ary conditions, especially traction boundary conditions. Work is presently underway to extend the solver to support adaptive
mesh refinement.

Our linearly-implicit time discretization requires the solution of the time-dependent incompressible Stokes equations
one or more times per timestep. To do so efficiently, we employ the projection method as a preconditioner for a FGMRES
solver applied to the Stokes operator, and our results indicate that the projection method-based preconditioner is generally
more effective than a similar preconditioner based on an approximation to the Schur complement of the incompressible
Stokes system. When either preconditioner is equipped with multigrid-preconditioned subdomain solvers, our results dem-
onstrate that the preconditioned FGMRES solver is algorithmically scalable for Re � 1 and for Re� 1. At higher Reynolds
Fig. 13. The u-component of the velocity as a function of y at x ¼ 0:5 for Re = 1000 for the lid-driven cavity flow problem.

Fig. 14. The v-component of the velocity as a function of x at y ¼ 0:5 for Re = 1000 for the lid-driven cavity flow problem.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7589
There are at least three possible routes to extending the present solver framework to handle complex geometries. For rel-
atively simple domains, it should be possible to extend the present finite difference methodology to mapped, logically-Carte-
sian multiblock grids, although in this case the boundary treatment will become substantially more difficult to implement.
Another approach would be to employ a finite element spatial discretization in place of the present finite difference scheme.
In this case, the construction of the corresponding projection preconditioner could possibly be accomplished in a manner
similar to that described in [40,41]. It is also possible to treat complex geometry using Cartesian grid approaches such as
the immersed boundary method [60,22,26,29]. In fact, we are presently developing a new immersed boundary code which
employs the present projection-preconditioned incompressible flow solver.

Finally, we emphasize that we expect that the projection method will serve as an effective preconditioner not only for the
present time discretization but for any linearly-implicit discretization of the incompressible Navier–Stokes equations which
requires the solution of the time-dependent incompressible Stokes equations. Converting an existing fractional-step incom-
pressible flow solver which uses a staggered-grid projection method to an unsplit solver is straightforward, essentially
requiring only that the projection solver be ‘‘wrapped” by an outer flexible Krylov solver such as FGMRES. Thus, using the
projection method as a preconditioner rather than as a solver may be an attractive approach to improving the support for
general physical boundary conditions in established incompressible flow codes.
Fig. 17. The u-component of the velocity as a function of y at x ¼ 0:5 for Re = 5000 for the lid-driven cavity flow problem.

Fig. 18. The v-component of the velocity as a function of x at y ¼ 0:5 for Re = 5000 for the lid-driven cavity flow problem.

Fig. 19. The u-component of the velocity as a function of y at x ¼ 0:5 for Re = 7500 for the lid-driven cavity flow problem.

Fig. 20. The v-component of the velocity as a function of x at y ¼ 0:5 for Re = 7500 for the lid-driven cavity flow problem.

Table 17
Estimated errors and convergence rates for u and p for the standard lid-driven cavity flow problem at Re = 100. Note that the exact solution possesses
singularities at the upper corners of the domain, which result in a discontinuity in u and blowup in p.

64� 64 Rate 128� 128 Rate 256� 256

Error in u at Re = 100

L1 5.87e�04 1.91 1.57e�04 1.89 4.22e�05

L2 2.28e�03 1.20 9.90e�04 1.09 4.66e�04

L1 5.96e�02 0.32 4.77e�02 0.18 4.20e�02

Error in p at Re = 100

L1 5.45e�04 1.21 2.36e�04 1.11 1.09e�04

L2 1.01e�02 0.01 1.00e�02 0.00 1.00e�02

L1 4.85e�01 �0.93 9.26e�01 �0.97 1.81e+00

7590 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595

Table 18
Estimated errors and convergence rates for u and p for the standard lid-driven cavity flow problem at Re = 1000. Because the effects of the corner singularities
are somewhat diminished at higher Reynolds numbers, the apparent order of accuracy of the scheme is higher at Re = 1000 than it is at Re = 100. Compare to
Table 17.

64� 64 Rate 128� 128 Rate 256� 256

Error in u at Re = 1000

L1 6.04e�03 2.19 1.32e�03 1.95 3.43e�04

L2 9.32e�03 1.81 2.65e�03 1.55 9.05e�04

L1 1.25e�01 0.13 1.14e�01 0.31 9.19e�02

Error in p at Re = 1000

L1 1.84e�03 1.84 5.11e�04 1.92 1.35e�04

L2 2.90e�03 1.00 1.45e�03 0.42 1.09e�03

L1 1.17e�01 �0.34 1.48e�01 �0.61 2.26e�01

Table 19
Estimated errors and convergence rates for u and p for the regularized lid-driven cavity flow problem at Re = 1000. Note that the scheme obtains fully second-
order convergence rates in all norms for this problem.

64� 64 Rate 128� 128 Rate 256� 256

Error in u at Re = 1000

L1 2.58e�03 1.91 6.85e�04 1.95 1.77e�04

L2 3.95e�03 1.85 1.10e�03 1.92 2.89e�04

L1 3.72e�02 1.74 1.12e�02 1.83 3.14e�03

Error in p at Re = 1000

L1 6.32e�04 1.74 1.90e�04 1.96 4.88e�05

L2 7.89e�04 1.74 2.36e�04 1.97 6.00e�05

L1 3.52e�03 1.80 1.01e�03 1.97 2.59e�04

Table 20
Estimated errors and convergence rates for u and p for the regularized lid-driven cavity flow problem at Re = 1000 with a third-order accurate tangential
velocity boundary condition implementation. Note that the estimated errors are similar to or lower than those obtained with the second-order accurate
tangential velocity boundary condition implementation, and that the estimated L1 errors in u are approximately one half to one third of those obtained with
the second-order implementation. Compare to Table 19.

64� 64 Rate 128� 128 Rate 256� 256

Error in u at Re = 1000

L1 1.48e�03 1.64 4.75e�04 1.81 1.35e�04

L2 2.24e�03 1.69 6.96e�04 1.86 1.92e�04

L1 1.89e�02 2.08 4.48e�03 2.03 1.10e�03

Error in p at Re = 1000

L1 3.23e�04 1.21 1.40e�04 1.78 4.07e�05

L2 4.57e�04 1.34 1.81e�04 1.83 5.08e�05

L1 3.45e�03 1.70 1.06e�03 2.10 2.47e�04

Table 21
Computational performance of the solver using either the projection preconditioner Pproj or the approximate Schur complement preconditioner bPSchur for the
standard (un-regularized) lid-driven cavity flow problem. Runtimes are reported in seconds and are normalized by the number of timesteps and by the size of
the computational grid (i.e., N2). The initial velocity is set to be uniformly zero, and the unsteady solver is run to time t ¼ 0:25. Note that the projection
preconditioner outperforms the approximate Schur complement preconditioner for this problem for these choices of parameters. Both preconditioners yield an
essentially scalable algorithm.

Re 64� 64 128� 128 256� 256

Normalized runtime (s) using Pproj

100 3.47e�5 3.54e�5 5.21e�5
1000 2.57e�5 2.36e�5 3.12e�5
5000 2.24e�5 2.07e�5 2.50e�5

Normalized runtime (s) using bPSchur

100 4.35e�05 4.21e�05 5.91e�05
1000 3.72e�05 3.18e�05 4.21e�05
5000 3.22e�05 2.93e�05 3.74e�05

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7591

7592 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
Acknowledgments

The author thanks D.B. Kothe of Oak Ridge National Laboratory for the initial suggestion to investigate the combination of
Godunov methods and staggered-grid spatial discretizations, and acknowledges correspondence with W.J. Rider of Sandia
National Laboratories on the use of Godunov methods with staggered-grid discretizations during the initial phase of this
work. The author also thanks C.S. Peskin and D.M. McQueen of the Courant Institute-New York University for helpful com-
ments on an early draft of the present manuscript, and thanks the anonymous reviewers, whose comments greatly improved
this paper. This work was sponsored in part by an American Heart Association Postdoctoral Fellowship (Grant Number
0626001T). Computations were performed at New York University using computer facilities funded in large part by a gen-
erous donation by St. Jude Medical, Inc.

Appendix A. Using xsPPM7 with a staggered-grid velocity field
When applied to the numerical solution of the incompressible Navier–Stokes equations, PPM [32] and other higher order
Godunov methods are typically employed with cell-centered discretizations. A notable exception is the work of Tau [12],
who employed a MAC discretization with a piecewise linear Godunov scheme. In the present work, we employ a stag-
gered-grid Godunov scheme to compute an upwinded approximation to ðu � rÞu. Note that unlike typical cell-centered
Godunov schemes which extrapolate cell-centered values at time tn to edge-centered values at time tnþ1

2 ¼ tn þ 1
2 Dt, we only

use the Godunov scheme to extrapolate values in space and not in time.
Our staggered-grid Godunov scheme proceeds as follows: We consider the u- and v-components of the staggered-grid

velocity field separately, and for each component, we construct a system of control volumes which are centered about that
component. For instance, the control volumes centered about the u-component of the velocity field are obtained by ‘‘shift-
ing” the computational grid by 1

2 Dx ¼ 1
2 h in the x-direction; see Fig. A1. Similarly, the control volumes centered about the

v-component of the velocity field are obtained by shifting the computational grid by 1
2 Dy ¼ 1

2 h in the y-direction. Advection
velocities are computed at the centers of the edges of the control volumes by linearly interpolating the staggered-grid veloc-
ity field. We next extrapolate values from the centers of the control volumes to the edges of the control volumes via the
xsPPM7 scheme described in [31]. We finally employ second-order non-conservative differencing to compute approxima-
tions to ðu � rÞu and ðu � rÞv on the staggered grid, using the advection velocity and the upwinded, xsPPM7-extrapolated
values. Note that once appropriate systems of control volumes have been constructed, and once the advection velocities have
been determined on the edges of the control volumes, the remainder of the scheme is the same as a cell-centered Godunov
scheme. In fact, our staggered-grid implementation simply re-uses an existing cell-centered advection code [22,29] with Dt
set to zero, so that values are extrapolated in space but not in time.
Fig. A1. Grid systems and velocity fields employed by the staggered-grid Godunov scheme to compute ðu � rÞu. The data structures employed to compute
ðu � rÞv are analogous, except that the control volumes are centered about the v-components of the staggered-grid velocity field instead of the u-
components. A. The computational grid along with the u-components of the staggered-grid velocity field. B. The control volumes centered about the velocity
components depicted in panel A along with the corresponding advection velocities. These control volumes are obtained by shifting the computational grid
by 1

2 Dx ¼ 1
2 h in the x direction. The advection velocities at the centers of the edges of the control volumes are computed by linearly interpolating the

staggered-grid velocity field u ¼ ðu;vÞ. C. The superposition of the grids shown in panels A and B.

All ghost values required by the advection scheme in the vicinity of physical boundaries are obtained via linear extrap-

7594 B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595
Finally, by plugging u� ¼ unþ1 þ Dt
q Gu into Eq. (B.3) and comparing the result to Eq. (B.1), we have that
Gpnþ1
2 ¼ Gu� Dt

q
l
2

LGu: ðB:8Þ
We obtain a formula for pnþ1
2 by positing LG ¼ GLc , so that
pnþ1
2 ¼ u� Dt

q
l
2

Lcu ¼ I � Dt
q

l
2

Lc
� �

u: ðB:9Þ
Generally, L and G do not commute, and LG ¼ GLc holds only in special cases, such as when periodic boundary conditions are
imposed on the computational domain. In fact, for problems with periodic boundaries, the projection method is an exact sol-
ver for Eqs. (B.1) and (B.2). In the presence of physical boundary conditions, however, typically LG – GLc. Moreover, it is gen-
erally possible only to impose approximations to the true physical boundary conditions with projection methods. Enforcing
normal traction, or tangential velocity or traction, boundary conditions is especially difficult; see [18,23].

References

[1] A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22 (104) (1968) 745–762.
[2] A.J. Chorin, On the convergence of discrete approximations to the Navier–Stokes equations, Math. Comput. 23 (106) (1969) 341–353.
[3] M.L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127 (1) (1996) 158–178.
[4] A.S. Almgren, J.B. Bell, P. Colella, T. Marthaler, A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J.

Sci. Comput. 18 (5) (1997) 1289–1309.
[5] D.F. Martin, P. Colella, A cell-centered adaptive projection method for the incompressible Euler equations, J. Comput. Phys. 163 (2) (2000) 271–312.
[6] A.S. Almgren, J.B. Bell, W.Y. Crutchfield, Approximate projection methods: Part I. Inviscid analysis, SIAM J. Sci. Comput. 22 (4) (2000) 1139–1159.
[7] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190 (2) (2003) 572–600.
[8] S.Y. Kadioglu, R. Klein, M.L. Minion, A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics, J. Comput. Phys. 227 (3)

(2008) 2012–2043.
[9] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys. 59 (2) (1985) 308–323.

[10] J.B. Bell, P. Colella, H.M. Glaz, A second-order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys. 85 (2) (1989) 257–
283.

[11] R.P. Beyer, A computational model of the cochlea using the immersed boundary method, J. Comput. Phys. 98 (1) (1992) 145–162.
[12] E.Y. Tau, A 2nd-order projection method for the incompressible Navier–Stokes equations in arbitrary domains, J. Comput. Phys. 115 (1) (1994) 147–

152.
[13] A.S. Almgren, J.B. Bell, W.G. Szymczak, A numerical method for the incompressible Navier–Stokes equations based on an approximate projection, SIAM

J. Sci. Comput. 17 (2) (1996) 358–369.
[14] L.H. Howell, J.B. Bell, An adaptive mesh projection method for viscous incompressible flow, SIAM J. Sci. Comput. 18 (4) (1997) 996–1013.
[15] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, A conservative adaptive projection method for the variable density incompressible

Navier–Stokes equations, J. Comput. Phys. 142 (1) (1998) 1–46.
[16] W.J. Rider, Filtering non-solenoidal modes in numerical solutions of incompressible flows, Int. J. Numer. Methods Fluid 28 (5) (1998) 789–814.
[17] A.M. Roma, C.S. Peskin, M.J. Berger, An adaptive version of the immersed boundary method, J. Comput. Phys. 153 (2) (1999) 509–534.
[18] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 168 (2) (2001) 464–

499.
[19] Z.-L. Li, M.-C. Lai, The immersed interface method for the Navier–Stokes equations with singular forces, J. Comput. Phys. 171 (2) (2001) 822–842.
[20] L. Lee, R.J. LeVeque, An immersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 25 (3) (2003) 832–856.
[21] R.D. Guy, A.L. Fogelson, Stability of approximate projection methods on cell-centered grids, J. Comput. Phys. 203 (2) (2005) 517–538.
[22] B.E. Griffith, C.S. Peskin, On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems,

J. Comput. Phys. 208 (1) (2005) 75–105.
[23] B. Yang, A. Prosperetti, A second-order boundary-fitted projection method for free-surface flow computations, J. Comput. Phys. 213 (2) (2006) 574–

590.
[24] C. Min, F. Gibou, A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids, J. Comput.

Phys. 219 (2) (2006) 912–929.
[25] Z. Zheng, L. Petzold, Runge–Kutta–Chebyshev projection method, J. Comput. Phys. 219 (2) (2006) 976–991.
[26] B.E. Griffith, R.D. Hornung, D.M. McQueen, C.S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J.

Comput. Phys. 223 (1) (2007) 10–49.
[27] D.F. Martin, P. Colella, D. Graves, A cell-centered adaptive projection method for the incompressible Navier–Stokes equations in three dimensions, J.

Comput. Phys. 227 (3) (2008) 1863–1886.
[28] D.V. Le, B.C. Khoo, K.M. Lim, An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput. Methods Appl.

Mech. Eng. 197 (2008) 2119–2130.
[29] B.E. Griffith, X. Luo, D.M. McQueen, C.S. Peskin, Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary

method, Int. J. Appl. Mech. 1 (1) (2009) 137–177.
[30] J.L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (44–47) (2006)

6011–6045.
[31] W.J. Rider, J.A. Greenough, J.R. Kamm, Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizations, J. Comput.

Phys. 225 (2) (2007) 1827–1848.
[32] P. Colella, P.R. Woodward, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys. 54 (1) (1984) 174–201.
[33] U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method, J. Comput. Phys. 48

(3) (1982) 387–411.
[34] O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Comput. Fluid 27 (4) (1998) 421–433.
[35] E. Erturk, T.C. Corke, C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Methods

Fluid 48 (7) (2005) 747–774.
[36] C.J. Roy, A.J. Sinclair, On the generation of exact solutions for evaluating numerical schemes and estimating discretization error, J. Comput. Phys. 228

(5) (2009) 1790–1802.
[37] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state Navier–Stokes equations, SIAM J. Sci. Comput. 24 (2002) 237–256.
[38] D. Silvester, H. Elman, D. Kay, A. Wathen, Efficient preconditioning of the linearized Navier–Stokes equations for incompressible flow, J. Comput. Appl.

Math. 128 (1–2) (2001) 261–279.

B.E. Griffith / Journal of Computational Physics 228 (2009) 7565–7595 7595
[39] H.C. Elman, V.E. Howle, J.N. Shadid, R.S. Tuminaro, A parallel block multi-level preconditioner for the 3D incompressible Navier–Stokes equations, J.
Comput. Phys. 187 (2) (2003) 504–523.

[40] H. Elman, V.E. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput. 27 (5)
(2006) 1651–1668.

[41] H. Elman, V.E. Howle, J. Shadid, R. Shuttleworth, R. Tuminaro, A taxonomy and comparison of parallel block multi-level preconditioners for the
incompressible Navier–Stokes equations, J. Comput. Phys. 227 (3) (2008) 1790–1808.

[42] D.A. Knoll, V.A. Mousseau, On Newton–Krylov multigrid methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 163 (1) (2000)
262–267.

[43] M. Pernice, M.D. Tocci, A multigrid-preconditioned Newton–Krylov method for the incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 23
(2) (2001) 398–418.

[44] S. Balay, V. Eijkhout, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in: E.
Arge, A.M. Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.

[45] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page, 2009. <http://www.mcs.anl.gov/
petsc>.

[46] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/
11 – Revision 3.0.0, Argonne National Laboratory, 2008.

[47] P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method: Advection–Diffusion and Isothermal Laminar Flow, John Wiley & Sons,
1998.

[48] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluid 8 (12) (1965)
2182–2189.

[49] Y. Saad, A flexible inner–outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (2) (1993) 461–469.
[50] V. Simoncini, D.B. Szyld, Flexible inner–outer Krylov subspace methods, SIAM J. Numer. Anal. 40 (6) (2003) 2219–2239.
[51] V. Simoncini, D.B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl. 14 (1)

(2007) 1–59.
[52] M.F. Murphy, G. Golub, A.J. Wathen, A note on preconditioning for indefinite linear systems, SIAM J. Sci. Comput. 21 (6) (2000) 1969–1972.
[53] S. Schaffer, A semicoarsening multigrid method for elliptic partial differential equations with highly discontinuous and anisotropic coefficients, SIAM J.

Sci. Comput. 20 (1) (1998) 228–242.
[54] P.N. Brown, R.D. Falgout, J.E. Jones, Semicoarsening multigrid on distributed memory machines, SIAM J. Sci. Comput. 21 (5) (2000) 1823–1834. also

available as LLNL technical report UCRL-JC-130720.
[55] R.D. Falgout, J.E. Jones, Multigrid on massively parallel architectures, in: E. Dick, K. Riemslagh, J. Vierendeels (Eds.), Multigred Methods VI, Lecture

Notes in Computational Science and Engineering, vol. 14, Springer-Verlag, 2000, pp. 101–107. also available as LLNL Technical Report UCRL-JC-
133948..

[56] S.F. Ashby, R.D. Falgout, A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng. 124 (1)
(1996) 145–159. also available as LLNL Technical Report UCRL-JC-122359.

[57] hypre: high performance preconditioners. <http://www.llnl.gov/CASC/hypre>.
[58] R.D. Falgout, U.M. Yang, hypre: a library of high performance preconditioners, in: P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra, A.G. Hoekstra (Eds.),

Computational Science – ICCS 2002 Part III, Lecture Notes in Computer Science, vol. 2331, Springer-Verlag, 2002, pp. 632–641, also available as LLNL
Technical Report UCRL-JC-146175.

[59] Y.-F. Peng, Y.H. Shiau, R.R. Hwang, Transition in a 2-D lid-driven cavity flow, Comput. Fluid 32 (3) (2003) 337–352.
[60] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[61] D.S. Balsara, Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys. 174 (2) (2001) 614–648.
[62] G. Toth, P.L. Roe, Divergence- and curl-preserving prolongation and restriction formulas, J. Comput. Phys. 180 (2) (2002) 736–750.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.llnl.gov/CASC/hypre

	An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner
	Introduction
	The continuous equations of motion
	The discretized equations of motion
	Spatial discretization and finite difference approximations
	Time discretization
	Physical boundary conditions

	Linear solvers
	A preconditioner based on the projection method
	An approximate Schur complement preconditioner
	Subdomain solvers

	Numerical results
	Forced flow
	Unforced flow
	Lid-driven cavity flow
	Comparison to benchmark solutions
	Convergence behavior
	Computational performance

	Discussion
	Acknowledgments
	Using xsPPM7 with a staggered-grid velocity field
	The projection method as an approximate solver for the incompressible Navier–Stokes equations
	References

